Maximum likelihood estimators for the extreme value index based on the block maxima method

نویسنده

  • Clément Dombry
چکیده

The maximum likelihood method offers a standard way to estimate the three parameters of a generalized extreme value (GEV) distribution. Combined with the block maxima method, it is often used in practice to assess the extreme value index and normalization constants of a distribution satisfying a first order extreme value condition, assuming implicitely that the block maxima are exactly GEV distributed. This is unsatisfactory since the GEV distribution is a good approximation of the block maxima distribution only for blocks of large size. The purpose of this paper is to provide a theoretical basis for this methodology. Under a first order extreme value condition only, we prove the existence and consistency of the maximum likelihood estimators for the extreme value index and normalization constants within the framework of the block maxima method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Kernel-type Estimators for the Extreme Value Index by P. Groeneboom,

A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasimaximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel...

متن کامل

Likelihood based inference for high-dimensional extreme value distributions

Multivariate extreme value statistical analysis is concerned with observations on several variables which are thought to possess some degree of tail-dependence. In areas such as the modeling of financial and insurance risks, or as the modeling of spatial variables, extreme value models in high dimensions (up to fifty or more) with their statistical inference procedures are needed. In this paper...

متن کامل

An efficient semiparametric maxima estimator of the extremal index

Abstract The extremal index θ , a measure of the degree of local dependence in the extremes of a stationary process, plays an important role in extreme value analyses. We estimate θ semiparametrically, using the relationship between the distribution of block maxima and the marginal distribution of a process to define a semiparametric model. We show that these semiparametric estimators are simpl...

متن کامل

Maximum likelihood estimation for the Fréchet distribution based on block maxima extracted from a time series

The block maxima method in extreme-value analysis proceeds by fitting an extreme-value distribution to a sample of block maxima extracted from an observed stretch of a time series. The method is usually validated under two simplifying assumptions: the block maxima should be distributed exactly according to an extreme-value distribution and the sample of block maxima should be independent. Both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013